Molecular Understanding of the Interfacial Interaction and Corrosion Resistance between Epoxy Adhesive and Metallic Oxides on Galvanized Steel

Author:

Li Shuangshuang1,Zhao Yanliang2,Wan Hailang1,Lin Jianping1,Min Junying1ORCID

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China

2. Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China

Abstract

The epoxy adhesive-galvanized steel adhesive structure has been widely used in various industrial fields, but achieving high bonding strength and corrosion resistance is a challenge. This study examined the impact of surface oxides on the interfacial bonding performance of two types of galvanized steel with Zn–Al or Zn–Al–Mg coatings. Scanning electron microscopy and X-ray photoelectron spectroscopy analysis showed that the Zn–Al coating was covered by ZnO and Al2O3, while MgO was additionally found on the Zn–Al–Mg coating. Both coatings exhibited excellent adhesion in dry environments, but after 21 days of water soaking, the Zn–Al–Mg joint demonstrated better corrosion resistance than the Zn–Al joint. Numerical simulations revealed that metallic oxides of ZnO, Al2O3, and MgO had different adsorption preferences for the main components of the adhesive. The adhesion stress at the coating–adhesive interface was mainly due to hydrogen bonds and ionic interactions, and the theoretical adhesion stress of MgO adhesive system was higher than that of ZnO and Al2O3. The corrosion resistance of the Zn–Al–Mg adhesive interface was mainly due to the stronger corrosion resistance of the coating itself, and the lower water-related hydrogen bond content at the MgO adhesive interface. Understanding these bonding mechanisms can lead to the development of improved adhesive-galvanized steel structures with enhanced corrosion resistance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3