Abstract
Subdivision schemes are extensively used in scientific and practical applications to produce continuous shapes in an iterative way. This paper introduces a framework to compute subdivision depths of ternary schemes. We first use subdivision algorithm in terms of convolution to compute the error bounds between two successive polygons produced by refinement procedure of subdivision schemes. Then, a formula for computing bound between the polygon at k-th stage and the limiting polygon is derived. After that, we predict numerically the number of subdivision steps (depths) required for smooth limiting shape based on the demand of user specified error (distance) tolerance. In addition, extensive numerical experiments were carried out to check the numerical outcomes of this new framework. The proposed methods are more efficient than the method proposed by Song et al.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献