Trajectory Optimization of Laser-Charged UAVs for Charging Wireless Rechargeable Sensor Networks

Author:

Liu Ning,Luo ChuanwenORCID,Cao Jia,Hong Yi,Chen Zhibo

Abstract

This paper considers a laser-powered unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) system. In the system, a UAV is dispatched as an energy transmitter to replenish energy for battery-limited sensors in a wireless rechargeable sensor network (WRSN) by transferring radio frequency (RF) signals, and a mobile unmanned vehicle (MUV)-loaded laser transmitter travels on a fixed path to charge the on-board energy-limited UAV when it arrives just below the UAV. Based on the system, we investigate the trajectory optimization of laser-charged UAVs for charging WRSNs (TOLC problem), which aims to optimize the flight trajectories of a UAV and the travel plans of an MUV cooperatively to minimize the total working time of the UAV so that the energy of every sensor is greater than or equal to the threshold. Then, we prove that the problem is NP-hard. To solve the TOLC problem, we first propose the weighted centered minimum coverage (WCMC) algorithm to cluster the sensors and compute the weighted center of each cluster. Based on the WCMC algorithm, we propose the TOLC algorithm (TOLCA) to design the detailed flight trajectory of a UAV and the travel plans of an MUV, which consists of the flight trajectory of a UAV, the hovering points of a UAV with the corresponding hovering times used for the charging sensors, the hovering points of a UAV with the corresponding hovering times used for replenishing energy itself, and the hovering times of a UAV waiting for an MUV. Numerical results are provided to verify that the suggested strategy provides an effective method for supplying wireless rechargeable sensor networks with sustainable energy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3