Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID
Abstract
:1. Introduction
2. Results
2.1. Patients Clinical and Bloodwork Parameters
2.2. Predicting COVID Severity with Clinical and Bloodwork Parameters and/or Metabolomics
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Judgment Criteria
4.3. Clinical Parameters
4.4. Metabolomics Analysis
4.5. Statistical Analysis and Machine Learning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jotwani, R.; Cheung, C.A.; Hoyler, M.M.; Lin, J.Y.; Perlstein, M.D.; Rubin, J.E.; Chan, J.M.; Pryor, K.O.; Brumberger, E.D. Trial under Fire: One New York City Anaesthesiology Residency Programme’s Redesign for the COVID-19 Surge. Br. J. Anaesth. 2020, 125, e386–e388. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Shi, Y.; Xue, S.; Jiang, H. Use of Serum KL-6 and Chest Radiographic Severity Grade to Predict 28-Day Mortality in COVID-19 Patients with Pneumonia: A Retrospective Cohort Study. BMC Pulm. Med. 2024, 24, 187. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Ma, Z.; Peppelenbosch, M.P.; Pan, Q. Potential Association between COVID-19 Mortality and Health-Care Resource Availability. Lancet Glob. Health 2020, 8, e480. [Google Scholar] [CrossRef]
- Asri, H.; Mousannif, H.; Moatassime, H.A.; Noel, T. Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis. Procedia Comput. Sci. 2016, 83, 1064–1069. [Google Scholar] [CrossRef]
- Alle, S.; Kanakan, A.; Siddiqui, S.; Garg, A.; Karthikeyan, A.; Mehta, P.; Mishra, N.; Chattopadhyay, P.; Devi, P.; Waghdhare, S.; et al. COVID-19 Risk Stratification and Mortality Prediction in Hospitalized Indian Patients: Harnessing Clinical Data for Public Health Benefits. PLoS ONE 2022, 17, e0264785. [Google Scholar] [CrossRef]
- Huyut, M.T.; Üstündağ, H. Prediction of Diagnosis and Prognosis of COVID-19 Disease by Blood Gas Parameters Using Decision Trees Machine Learning Model: A Retrospective Observational Study. Med. Gas. Res. 2022, 12, 60–66. [Google Scholar] [CrossRef]
- Khedar, R.S.; Gupta, R.; Sharma, K.; Mittal, K.; Ambaliya, H.C.; Gupta, J.B.; Singh, S.; Sharma, S.; Singh, Y.; Mathur, A. Biomarkers and Outcomes in Hospitalised Patients with COVID-19: A Prospective Registry. BMJ Open 2022, 12, e067430. [Google Scholar] [CrossRef]
- Willette, A.A.; Willette, S.A.; Wang, Q.; Pappas, C.; Klinedinst, B.S.; Le, S.; Larsen, B.; Pollpeter, A.; Li, T.; Mochel, J.P.; et al. Using Machine Learning to Predict COVID-19 Infection and Severity Risk among 4510 Aged Adults: A UK Biobank Cohort Study. Sci. Rep. 2022, 12, 7736. [Google Scholar] [CrossRef]
- Brinati, D.; Campagner, A.; Ferrari, D.; Locatelli, M.; Banfi, G.; Cabitza, F. Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study. J. Med. Syst. 2020, 44, 135. [Google Scholar] [CrossRef]
- Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.; Beer, L.; et al. Common Pitfalls and Recommendations for Using Machine Learning to Detect and Prognosticate for COVID-19 Using Chest Radiographs and CT Scans. Nat. Mach. Intell. 2021, 3, 199–217. [Google Scholar] [CrossRef]
- Bruzzone, C.; Conde, R.; Embade, N.; Mato, J.M.; Millet, O. Metabolomics as a Powerful Tool for Diagnostic, Pronostic and Drug Intervention Analysis in COVID-19. Front. Mol. Biosci. 2023, 10, 1111482. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Suleiman, M.; Pérez-López, A. Metabolomics in the Diagnosis and Prognosis of COVID-19. Front. Genet. 2021, 12, 721556. [Google Scholar] [CrossRef]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef] [PubMed]
- Spick, M.; Lewis, H.M.; Wilde, M.J.; Hopley, C.; Huggett, J.; Bailey, M.J. Systematic Review with Meta-Analysis of Diagnostic Test Accuracy for COVID-19 by Mass Spectrometry. Metabolism 2022, 126, 154922. [Google Scholar] [CrossRef]
- Bourgin, M.; Durand, S.; Kroemer, G. Diagnostic, Prognostic and Mechanistic Biomarkers of COVID-19 Identified by Mass Spectrometric Metabolomics. Metabolites 2023, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Saheb Sharif-Askari, N.; Soares, N.C.; Mohamed, H.A.; Saheb Sharif-Askari, F.; Alsayed, H.A.H.; Al-Hroub, H.; Salameh, L.; Osman, R.S.; Mahboub, B.; Hamid, Q.; et al. Saliva Metabolomic Profile of COVID-19 Patients Associates with Disease Severity. Metabolomics 2022, 18, 81. [Google Scholar] [CrossRef]
- Frampas, C.F.; Longman, K.; Spick, M.; Lewis, H.-M.; Costa, C.D.S.; Stewart, A.; Dunn-Walters, D.; Greener, D.; Evetts, G.; Skene, D.J.; et al. Untargeted Saliva Metabolomics by Liquid Chromatography—Mass Spectrometry Reveals Markers of COVID-19 Severity. PLoS ONE 2022, 17, e0274967. [Google Scholar] [CrossRef]
- Ceperuelo-Mallafré, V.; Reverté, L.; Peraire, J.; Madeira, A.; Maymó-Masip, E.; López-Dupla, M.; Gutierrez-Valencia, A.; Ruiz-Mateos, E.; Buzón, M.J.; Jorba, R.; et al. Circulating Pyruvate Is a Potent Prognostic Marker for Critical COVID-19 Outcomes. Front. Immunol. 2022, 13, 912579. [Google Scholar] [CrossRef]
- Occelli, C.; Guigonis, J.-M.; Lindenthal, S.; Cagnard, A.; Graslin, F.; Brglez, V.; Seitz-Polski, B.; Dellamonica, J.; Levraut, J.; Pourcher, T. Untargeted Plasma Metabolomic Fingerprinting Highlights Several Biomarkers for the Diagnosis and Prognosis of Coronavirus Disease 19. Front. Med. 2022, 9, 995069. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19): Dexamethasone. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-dexamethasone (accessed on 16 January 2023).
- Di Minno, A.; Gelzo, M.; Caterino, M.; Costanzo, M.; Ruoppolo, M.; Castaldo, G. Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int. J. Mol. Sci. 2022, 23, 5213. [Google Scholar] [CrossRef] [PubMed]
- Sage, A.J. Random Forest Robustness, Variable Importance, and Tree Aggregation. Ph.D. Thesis, Iowa State University, Ames, IO, USA, 2018. [Google Scholar]
- Bordbar, M.M.; Samadinia, H.; Sheini, A.; Aboonajmi, J.; Hashemi, P.; Khoshsafar, H.; Halabian, R.; Khanmohammadi, A.; Gh, B.F.N.M.; Sharghi, H.; et al. Visual Diagnosis of COVID-19 Disease Based on Serum Metabolites Using a Paper-Based Electronic Tongue. Anal. Chim. Acta 2022, 1226, 340286. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Meoni, G.; Pelagatti, L.; Celli, T.; Veneziani, F.; Petrucci, F.; Vannucchi, V.; Bertini, L.; Luchinat, C.; Landini, G.; et al. Profiling Metabolites and Lipoproteins in COMETA, an Italian Cohort of COVID-19 Patients. PLOS Pathog. 2022, 18, e1010443. [Google Scholar] [CrossRef] [PubMed]
- Mirmozaffari, M.; Yazdani, M.; Boskabadi, A.; Ahady Dolatsara, H.; Kabirifar, K.; Amiri Golilarz, N. A Novel Machine Learning Approach Combined with Optimization Models for Eco-Efficiency Evaluation. Appl. Sci. 2020, 10, 5210. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Khalili, S.M.; Tavassoli, L.S.; Boskabadi, A. A Novel Hybrid Parametric and Non-Parametric Optimisation Model for Average Technical Efficiency Assessment in Public Hospitals during and Post-COVID-19 Pandemic. Bioengineering 2021, 9, 7. [Google Scholar] [CrossRef]
- Thompson, J.W.; Adams, K.J.; Adamski, J.; Asad, Y.; Borts, D.; Bowden, J.A.; Byram, G.; Dang, V.; Dunn, W.B.; Fernandez, F.; et al. International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Anal. Chem. 2019, 91, 14407–14416. [Google Scholar] [CrossRef]
- Siskos, A.P.; Jain, P.; Römisch-Margl, W.; Bennett, M.; Achaintre, D.; Asad, Y.; Marney, L.; Richardson, L.; Koulman, A.; Griffin, J.L.; et al. Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Anal. Chem. 2017, 89, 656–665. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [Google Scholar] [CrossRef]
- Lepoittevin, M.; Blancart-Remaury, Q.; Kerforne, T.; Pellerin, L.; Hauet, T.; Thuillier, R. Comparison between 5 Extractions Methods in Either Plasma or Serum to Determine the Optimal Extraction and Matrix Combination for Human Metabolomics. Cell Mol. Biol. Lett. 2023, 28, 43. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; MSOR Connections; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Lepoittevin, M.; Kerforne, T.; Pellerin, L.; Hauet, T.; Thuillier, R. Molecular Markers of Kidney Transplantation Outcome: Current Omics Tools and Future Developments. Int. J. Mol. Sci. 2022, 23, 6318. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Al-Madeed, S.; Zughaier, S.M.; Doi, S.A.R.; Hassen, H.; Islam, M.T. An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning. Cogn. Comput. 2021, 16, 1778–1793. [Google Scholar] [CrossRef]
- Weng, Z.; Chen, Q.; Li, S.; Li, H.; Zhang, Q.; Lu, S.; Wu, L.; Xiong, L.; Mi, B.; Liu, D.; et al. ANDC: An early warning score to predict mortality risk for patients with Coronavirus Disease. J. Transl. Med. 2020, 18, 1–10. [Google Scholar] [CrossRef]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef]
- Kar, S.; Chawla, R.; Haranath, S.P.; Ramasubban, S.; Ramakrishnan, N.; Vaishya, R.; Sibal, A.; Reddy, S. Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Subudhi, S.; Verma, A.; Patel, A.B.; Hardin, C.C.; Khandekar, M.J.; Lee, H.; McEvoy, D.; Stylianopoulos, T.; Munn, L.L.; Dutta, S.; et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. npj Digit. Med. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Mahdavi, M.; Choubdar, H.; Zabeh, E.; Rieder, M.; Safavi-Naeini, S.; Jobbagy, Z.; Ghorbani, A.; Abedini, A.; Kiani, A.; Khanlarzadeh, V.; et al. A machine learning based exploration of COVID-19 mortality risk. PLOS ONE 2021, 16, e0252384. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Sotudian, S.; Wang, T.; Xu, T.; Hu, Y.; Gaitanidis, A.; Breen, K.; Velmahos, G.C.; Paschalidis, I.C.; Information, C.F.; et al. Early prediction of level-of-care requirements in patients with COVID-19. eLife 2020, 9. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, D.; Xu, J.; Chen, Z.; Yang, T.; Zhao, P.; Chen, G.; Cheng, G.; Wang, Y.; Bi, J.; et al. Prediction for Progression Risk in Patients With COVID-19 Pneumonia: The CALL Score. Clin. Infect. Dis. 2020, 71, 1393–1399. [Google Scholar] [CrossRef]
- Magunia, H.; Lederer, S.; Verbuecheln, R.; Gilot, B.J.; Koeppen, M.; Haeberle, H.A.; Mirakaj, V.; Hofmann, P.; Marx, G.; Bickenbach, J.; et al. Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort. Crit. Care 2021, 25, 1–14. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M.; et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2020, 2, 283–288. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef]
- Kishaba, T.; Tamaki, H.; Shimaoka, Y.; Fukuyama, H.; Yamashiro, S. Staging of Acute Exacerbation in Patients with Idiopathic Pulmonary Fibrosis. Lung 2013, 192, 141–149. [Google Scholar] [CrossRef]
- Lu, J.; Hu, S.; Fan, R.; Liu, Z.; Yin, X.; Wang, Q.; Lv, Q.; Cai, Z.; Li, H.; Hu, Y.; et al. ACP Risk Grade: A Simple Mortality Index for Patients with Confirmed or Suspected Severe Acute Respiratory Syndrome Coronavirus 2 Disease (COVID-19) During the Early Stage of Outbreak in Wuhan, China. Available online: https://www.medrxiv.org/content/10.1101/2020.02.20.20025510v1 (accessed on 16 January 2023). [CrossRef]
- Liu, Y.; Mao, B.; Liang, S.; Yang, J.-W.; Lu, H.-W.; Chai, Y.-H.; Wang, L.; Zhang, L.; Li, Q.-H.; Zhao, L.; et al. Association between age and clinical characteristics and outcomes of COVID. Eur. Respir. J. 2020, 55, 2001112. [Google Scholar] [CrossRef]
Clinical and Bloodwork Dataset | ||||||
AUC (95%CI) | Specificity | Sensitivity | Brier Score | Youden’s index | [Acc > NIR] p-Value | |
GLM | 0.62 (0.32, 0.86) | 0.71 | 0.5 | 1.31 | 0.214 | 0.3938 |
RandomForest | 0.85 (0.55, 0.98) | 1 | 0.67 | 1.38 | 0.67 | 0.0222 |
KNN | 0.77 (0.46, 0.95) | 0.86 | 0.67 | 1.46 | 0.52 | 0.0798 |
SVM | 0.69 (0.39, 0.91) | 0.71 | 0.67 | 1.54 | 0.381 | 0.2033 |
C5.0 | 0.77 (0.46, 0.95) | 0.71 | 0.83 | 1.77 | 0.55 | 0.0798 |
Metabolomics Alone Dataset | ||||||
AUC (95%CI) | Specificity | Sensitivity | Brier Score | Youden’s index | [Acc > NIR] p-Value | |
GLM | 0.7 (0.46, 0.88) | 0.81 | 0.56 | 1.3 | 0.374 | 0.1299 |
RandomForest | 0.75 (0.50, 0.91) | 1 | 0.44 | 1.05 | 0.44 | 0.0553 |
KNN | 0.7 (0.46, 0.88) | 0.64 | 0.78 | 1.7 | 0.414 | 0.1299 |
SVM | 0.8 (0.56, 0.94) | 1 | 0.56 | 1.2 | 0.556 | 0.0189 |
C5.0 | 0.7 (0.46, 0.88) | 1 | 0.33 | 0.9 | 0.33 | 0.1299 |
Full Dataset Which Includes Metabolites | ||||||
AUC (95%CI) | Specificity | Sensitivity | Brier Score | Youden’s index | [Acc > NIR] p-Value | |
GLM | 0.77 (0.46, 0.95) | 0.86 | 0.67 | 1.46 | 0.52 | 0.0798 |
RandomForest | 0.92 (0.64, 0.99) | 1 | 0.83 | 1.62 | 0.83 | 0.0039 |
KNN | 0.92 (0.64, 0.99) | 0.86 | 1 | 1.92 | 0.857 | 0.0039 |
SVM | 0.69 (0.39, 0.91) | 1 | 0.64 | 0.923 | 0.333 | 0.9623 |
C5.0 | 0.77 (0.46, 0.95) | 0.86 | 0.67 | 1.46 | 0.524 | 0.0798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepoittevin, M.; Remaury, Q.B.; Lévêque, N.; Thille, A.W.; Brunet, T.; Salaun, K.; Catroux, M.; Pellerin, L.; Hauet, T.; Thuillier, R. Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID. Int. J. Mol. Sci. 2024, 25, 12199. https://doi.org/10.3390/ijms252212199
Lepoittevin M, Remaury QB, Lévêque N, Thille AW, Brunet T, Salaun K, Catroux M, Pellerin L, Hauet T, Thuillier R. Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID. International Journal of Molecular Sciences. 2024; 25(22):12199. https://doi.org/10.3390/ijms252212199
Chicago/Turabian StyleLepoittevin, Maryne, Quentin Blancart Remaury, Nicolas Lévêque, Arnaud W. Thille, Thomas Brunet, Karine Salaun, Mélanie Catroux, Luc Pellerin, Thierry Hauet, and Raphael Thuillier. 2024. "Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID" International Journal of Molecular Sciences 25, no. 22: 12199. https://doi.org/10.3390/ijms252212199
APA StyleLepoittevin, M., Remaury, Q. B., Lévêque, N., Thille, A. W., Brunet, T., Salaun, K., Catroux, M., Pellerin, L., Hauet, T., & Thuillier, R. (2024). Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID. International Journal of Molecular Sciences, 25(22), 12199. https://doi.org/10.3390/ijms252212199