An Efficient Framework for Remote Sensing Parallel Processing: Integrating the Artificial Bee Colony Algorithm and Multiagent Technology

Author:

Yang Lina,Sun Xu,Li ZhenlongORCID

Abstract

Remote sensing (RS) image processing can be converted to an optimization problem, which can then be solved by swarm intelligence algorithms, such as the artificial bee colony (ABC) algorithm, to improve the accuracy of the results. However, such optimization algorithms often result in a heavy computational burden. To realize the intrinsic parallel computing ability of ABC to address the computational challenges of RS optimization, an improved multiagent (MA)-based ABC framework with a reduced communication cost among agents is proposed by utilizing MA technology. Two types of agents, massive bee agents and one administration agent, located in multiple computing nodes are designed. Based on the communication and cooperation among agents, RS optimization computing is realized in a distributed and concurrent manner. Using hyperspectral RS clustering and endmember extraction as case studies, experimental results indicate that the proposed MA-based ABC approach can effectively improve the computing efficiency while maintaining optimization accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aspect-based sentiment analysis: A dual-task learning architecture using imbalanced maximized-area under the curve proximate support vector machine and reinforcement learning;Information Sciences;2024-09

2. Confrontation Simulation Platform Based on Spatio-temporal Agents;2023 International Conference on Cyber-Physical Social Intelligence (ICCSI);2023-10-20

3. Double strategy fusion improved sparrow search algorithm;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

4. Construction of Urban Planning Model Based on Remote Sensing Image Data Processing Algorithm;2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME);2023-06

5. An Improved Sparrow Search Algorithm and Its Application in HIFU Sound Field;Computational Intelligence and Neuroscience;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3