An IoT-Aware Solution to Support Governments in Air Pollution Monitoring Based on the Combination of Real-Time Data and Citizen Feedback

Author:

Montanaro TeodoroORCID,Sergi IlariaORCID,Basile Matteo,Mainetti LucaORCID,Patrono LuigiORCID

Abstract

One of the main concerns of the last century is regarding the air pollution and its effects caused on human health. Its impact is particularly evident in cities and urban areas where governments are trying to mitigate its effects. Although different solutions have been already proposed, citizens continue to report bad conditions in the areas in which they live. This paper proposes a solution to support governments in monitoring the city pollution through the combination of user feedbacks/reports and real-time data acquired through dedicated mobile IoT sensors dynamically re-located by government officials to verify the reported conditions of specific areas. The mobile devices leverage on dedicated sensors to monitor the air quality and capture main roads traffic conditions through machine learning techniques. The system exposes a mobile application and a website to support the collection of citizens’ reports and show gathered data to both institutions and end-users. A proof-of-concept of the proposed solution has been prototyped in a medium-sized university campus. Both the performance and functional validation have demonstrated the feasibility and the effectiveness of the system and allowed the definition of some lessons learned, as well as future works.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain and IoT integration for secure short-term and long-term air quality monitoring system using optimized neural network;Environmental Science and Pollution Research;2024-05-31

2. Decoding Global Indoor Health Perception on Social Media Through NLP and Transformer Deep Learning;Artificial Intelligence in Performance‐Driven Design;2024-04-19

3. Early Detection and Prevention of Malicious User Behavior on Twitter Using Deep Learning Techniques;IEEE Transactions on Computational Social Systems;2024

4. Smart City Air Quality Monitoring: A Mobile Application for Intelligent Cities;Advances in Intelligent Systems and Computing;2024

5. Integrative Deep Learning Forecasting of Air Quality Index in India: A Fusion of Bidirectional LSTM and Sensor Data;Proceedings of the 2023 11th International Conference on Information Technology: IoT and Smart City;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3