Experimental Investigation on Bio-Machining of Nickel, Titanium and Nitinol (Shape Memory Alloys) Using Acidithiobacillus ferrooxidans Microorganisms

Author:

Pradeep Mani1,Rajesh Shangumavel1,Uthayakumar Marimuthu1ORCID,Mathalai Sundaram Chandrasekar2,Korniejenko Kinga3ORCID,Miernik Krzysztof3ORCID,Majid Mohd Shukry Abdul4ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India

2. Department of Mechanical Engineering, Nadar Saraswathi College of Engineering and Technology, Theni 625531, India

3. Faculty of Material Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Kraków, Poland

4. Faculty of Mechanical Engineering and Technology, University Malaysia Perlis, Arau 02600, Perlis, Malaysia

Abstract

Micromachining plays a vital role in the manufacturing industry in producing microcomponents with high sensitivity and fine dimensional tolerances for implant materials in medical applications. Micro-machining can be carried out through various machining processes like physical, chemical and biological processes, although the use of biological machining is limited. In biological machining, microorganisms are used as a source of energy to machine the components, and machining with microorganism brings a lot of advantages in the machining process like the production of components with lower energy resources, low cost, no heat-affected zone and fine dimensional tolerances, which makes it suitable for machining implant materials. In other machining process like conventional and unconventional machining processes, the heat-affected zone, dimensional tolerances and environmental-related problems are the major issues, as these processes generate more heat while machining. This damages the material, which will not be able to be used for certain applications, and this issue can be overcome by bio-machining. In this present work, nickel, titanium and nitinol are manufactured using the powder metallurgy technique. They are manufactured as a 10 mm diameter and 5 mm thick pellet. The fabricated nickel, titanium and nitinol shape memory alloys are machined with Acidithiobacillus ferrooxidans microorganisms to obtain a better material removal rate and surface roughness and to check the bio-machining performance by considering various parameters such as shaking speed, temperature, pH and percentage of ferric content for the future scope of biomedical applications. Considering these parameters, microorganisms play a vital role in the temperature, shaking speed and time of the bio-machining process, and it was observed that a better material removal rate and surface roughness are achieved at a temperature of 30 °C, shaking speed of 140 rpm and machining time of 72 h.

Funder

DST–AMT

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3