Comparison of Eye and Face Features on Drowsiness Analysis

Author:

Kao I-HsiORCID,Chan Ching-YaoORCID

Abstract

Drowsiness is one of the leading causes of traffic accidents. For those who operate large machinery or motor vehicles, incidents due to lack of sleep can cause property damage and sometimes lead to grave consequences of injuries and fatality. This study aims to design learning models to recognize drowsiness through human facial features. In addition, this work analyzes the attentions of individual neurons in the learning model to understand how neural networks interpret drowsiness. For this analysis, gradient-weighted class activation mapping (Grad-CAM) is implemented in the neural networks to display the attention of neurons. The eye and face images are processed separately to the model for the training process. The results initially show that better results can be obtained by delivering eye images alone. The effect of Grad-CAM is also more reasonable using eye images alone. Furthermore, this work proposed a feature analysis method, K-nearest neighbors Sigma (KNN-Sigma), to estimate the homogeneous concentration and heterogeneous separation of the extracted features. In the end, we found that the fusion of face and eye signals gave the best results for recognition accuracy and KNN-sigma. The area under the curve (AUC) of using face, eye, and fusion images are 0.814, 0.897, and 0.935, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Drowsy Driving-Sleep and Sleep Disorders,2017

2. Cognitive components of simulated driving performance: Sleep loss effects and predictors

3. Drivers are Falling Asleep Behind the Wheel https://www.nsc.org/road/safety-topics/fatigued-driver

4. Facts + Statistics: Drowsy Driving https://www.iii.org/fact-statistic/facts-statistics-drowsy-driving

5. Overview of Motor Vehicle Crashes in 2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3