Stimulation of Biological Structures on the Nanoscale Using Interfaces with Large Built-In Spontaneous Polarizations

Author:

Zia Nida1ORCID,Stroscio Michael2ORCID,Dutta Mitra3

Affiliation:

1. Electrical and Computer Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA

2. Electrical and Computer Engineering Department, Physics Department and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

3. Electrical and Computer Engineering Department and Physics Department, University of Illinois at Chicago, Chicago, IL 60607, USA

Abstract

The electric potential stimulation of biological structures in aqueous environments is well-known to be a result of the gating of voltage-gated ion channels. Such voltage-gated ion channels are ubiquitous in the membranes of a wide variety of cells and they play central roles in a wide variety of sensing mechanisms and neuronal functions in biological systems. Experimental studies of ion-channel gating are frequently conducted using path-clamp techniques by placing a cumbersome external electrode in the vicinity of the extracellular side of the ion channel. Recently, it has been demonstrated that laser-induced polarization of nanoscale quantum dots can produce voltage sufficient to gate voltage-gated ion channels. This study specifically focuses on a new method of gating voltage-gated ion channels using 2D structures made of materials exhibiting large naturally occurring spontaneous polarizations, thereby eliminating the need for an external electrode or an illuminating laser. The work presents the use of self-polarizing semiconductor flakes, namely, 2H-SiC, ZnO, and GaN, to produce electric potential that is sufficient to gate voltage-gated ion channels when existing in proximity to it.

Funder

ARO Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3