Engineering Properties and Microstructure of Soils Stabilized by Red-Mud-Based Cementitious Material

Author:

Li Wentao12,Huang Ke12ORCID,Chen Feng2,Li Lihua12,Cheng Yang12,Yang Kang12

Affiliation:

1. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China

2. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

Red mud (RM) is an industrial waste generated in the process of aluminum refinement. The recycling and reusing of RM have become urgent problems to be solved. To explore the feasibility of using RM in geotechnical engineering, this study combined magnesium oxide (MgO) (or calcium oxide (CaO)) with RM as an RM-based binder, which was then used to stabilize the soil. The physical, mechanical, and micro-structural properties of the stabilized soil were investigated. As the content of MgO or CaO in the mixture increased, the unconfined compressive strength (UCS) of the RM-based cementitious materials first increased and then decreased. For the soils stabilized with RM–MgO or RM–CaO, the UCS increased and then decreased, reaching a maximum at RM:MgO = 5:5 or RM:CaO = 8:2. The addition of sodium hydroxide (NaOH) promoted the hydration reaction. The UCS enhancement ranged from 8.09% to 66.67% for the RM–MgO stabilized soils and 204.6% to 346.6% for the RM–CaO stabilized soils. The optimum ratio of the RM–MgO stabilized soil (with NaOH) was 2:8, while that of the RM–CaO stabilized soil (with NaOH) was 4:6. Freeze–thaw cycles reduced the UCS of the stabilized soil, but the resistance of the stabilized soil to freeze–thaw erosion was significantly improved by the addition of RM–MgO or RM–CaO, and the soil stabilized with RM–MgO had better freeze–thaw resistance than that with RM–CaO. The hydrated magnesium silicate generated by the RM–MgO stabilized soil and the hydrated calcium silicate generated by the RM–CaO stabilized soil helped to improve the UCS of the stabilized soil. The freeze–thaw cycles did not weaken the formation of hydration products in the stabilized soil but could result in physical damage to the stabilized soils. The decrease in the UCS of the stabilized soil was mainly due to physical damage.

Funder

Open Project Funding of Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes

Joint Funds of the Natural Science Foundation of Hubei Province

Key Research and Development Program of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3