Affiliation:
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
3. Hainan Institute of Zhejiang University, Sanya 572025, China
Abstract
Defect detection in power scenarios is a critical task that plays a significant role in ensuring the safety, reliability, and efficiency of power systems. The existing technology requires enhancement in its learning ability from large volumes of data to achieve ideal detection effect results. Power scene data involve privacy and security issues, and there is an imbalance in the number of samples across different defect categories, all of which will affect the performance of defect detection models. With the emergence of the Internet of Things (IoT), the integration of IoT with machine learning offers a new direction for defect detection in power equipment. Meanwhile, a generative adversarial network based on multi-view fusion and self-attention is proposed for few-shot image generation, named MVSA-GAN. The IoT devices capture real-time data from the power scene, which are then used to train the MVSA-GAN model, enabling it to generate realistic and diverse defect data. The designed self-attention encoder focuses on the relevant features of different parts of the image to capture the contextual information of the input image and improve the authenticity and coherence of the image. A multi-view feature fusion module is proposed to capture the complex structure and texture of the power scene through the selective fusion of global and local features, and improve the authenticity and diversity of generated images. Experiments show that the few-shot image generation method proposed in this paper can generate real and diverse defect data for power scene defects. The proposed method achieved FID and LPIPS scores of 67.87 and 0.179, surpassing SOTA methods, such as FIGR and DAWSON.
Funder
National Natural Science Foundation of China
Research Startup Funding
State Grid Corporation of China Technology Project
National Natural Science Foundation of Zhejiang Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献