Evaluation of Eight Global Precipitation Datasets in Hydrological Modeling

Author:

Xiang Yiheng,Chen Jie,Li LuORCID,Peng Tao,Yin Zhiyuan

Abstract

The number of global precipitation datasets (PPs) is on the rise and they are commonly used for hydrological applications. A comprehensive evaluation on their performance in hydrological modeling is required to improve their performance. This study comprehensively evaluates the performance of eight widely used PPs in hydrological modeling by comparing with gauge-observed precipitation for a large number of catchments. These PPs include the Global Precipitation Climatology Centre (GPCC), Climate Hazards Group Infrared Precipitation with Station dataset (CHIRPS) V2.0, Climate Prediction Center Morphing Gauge Blended dataset (CMORPH BLD), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN CDR), Tropical Rainfall Measuring Mission multi-satellite Precipitation Analysis 3B42RT (TMPA 3B42RT), Multi-Source Weighted-Ensemble Precipitation (MSWEP V2.0), European Center for Medium-range Weather Forecast Reanalysis 5 (ERA5) and WATCH Forcing Data methodology applied to ERA-Interim Data (WFDEI). Specifically, the evaluation is conducted over 1382 catchments in China, Europe and North America for the 1998-2015 period at a daily temporal scale. The reliabilities of PPs in hydrological modeling are evaluated with a calibrated hydrological model using rain gauge observations. The effectiveness of PPs-specific calibration and bias correction in hydrological modeling performances are also investigated for all PPs. The results show that: (1) compared with the rain gauge observations, GPCC provides the best performance overall, followed by MSWEP V2.0; (2) among the eight PPs, the ones incorporating daily gauge data (MSWEP V2.0 and CMORPH BLD) provide superior hydrological performance, followed by those incorporating 5-day (CHIRPS V2.0) and monthly (TMPA 3B42RT, WFDEI, and PERSIANN CDR) gauge data. MSWEP V2.0 and CMORPH BLD perform better than GPCC, underscoring the effectiveness of merging multiple satellite and reanalysis datasets; (3) regionally, all PPs exhibit better performances in temperate regions than in arid or topographically complex mountainous regions; and (4) PPs-specific calibration and bias correction both can improve the streamflow simulations for all eight PPs in terms of the Nash and Sutcliffe efficiency and the absolute bias. This study provides insights on the reliabilities of PPs in hydrological modeling and the approaches to improve their performance, which is expected to provide a reference for the applications of global precipitation datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3