Data Preprocessing Method and API for Mining Processes from Cloud-Based Application Event Logs

Author:

El-Gharib Najah MaryORCID,Amyot DanielORCID

Abstract

Process mining (PM) exploits event logs to obtain meaningful information about the processes that produced them. As the number of applications developed on cloud infrastructures is increasing, it becomes important to study and discover their underlying processes. However, many current PM technologies face challenges in dealing with complex and large event logs from cloud applications, especially when they have little structure (e.g., clickstreams). By using Design Science Research, this paper introduces a new method, called cloud pattern API-process mining (CPA-PM), which enables the discovery and analysis of cloud-based application processes using PM in a way that addresses many of these challenges. CPA-PM exploits a new application programming interface, with an R implementation, for creating repeatable scripts that preprocess event logs collected from such applications. Applying CPA-PM to a case with real and evolving event logs related to the trial process of a software-as-a-service cloud application led to useful analyses and insights, with reusable scripts. CPA-PM helps producing executable scripts for filtering event logs from clickstream and cloud-based applications, where the scripts can be used in pipelines while minimizing the need for error-prone and time-consuming manual filtering.

Funder

Ontario Graduate Scholarship

University of Ottawa

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robotic process automation using process mining — A systematic literature review;Data & Knowledge Engineering;2023-11

2. Enhancing the website usage using process mining;International Journal of Quality & Reliability Management;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3