A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector

Author:

Aouichak IsmailORCID,Jacques SébastienORCID,Bissey Sébastien,Reymond Cédric,Besson Téo,Le Bunetel Jean-Charles

Abstract

Controlling the cost of electricity consumption remains a major concern, particularly in the residential sector. Smart home electricity management systems (HEMS) are becoming increasingly popular for providing uninterrupted power and improved power quality, as well as for reducing the cost of electricity consumption. When power transfer is required between a storage system and the AC grid, and vice versa, these HEMS require the use of a bidirectional DC–AC converter. This paper emphasizes the potential value of an almost unexplored topology, the design of which was based on the generation of sinusoidal signals from sinusoidal half waves. A DC–DC stage, which behaved as a configurable voltage source, was in series with a DC–AC stage, i.e., an H-bridge, to achieve an architecture that could operate in both grid and off-grid configurations. Wide bandgap power switches (silicon carbide metal-oxide-semiconductor field-effect transistors [MOSFETs]), combined with appropriate control strategies, were the keys to increasing compactness of the converter while ensuring good performance, especially in terms of efficiency. The converter was configured to automatically change the operating mode, i.e., inverter or rectifier in power factor correction mode, according to an instruction issued by the HEMS; the latter being integrated in the control circuit with automatic duty cycle management. Therefore, the HEMS set the amount of energy to be injected into the grid or to be stored. The experimental results validate the operating modes of the proposed converter and demonstrate the relevance of such a topology when combined with an HEMS, especially in the case of an AC grid connection. The efficiency measurements of the bidirectional DC–AC converter, performed in grid-connected inverter mode, show that we exceeded the efficiency target of 95% over the entire output power range studied, i.e., from 100 W to 1.5 kW.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3