Modelling of Energy Storage System from Photoelectric Conversion in a Phase Change Battery

Author:

Karbowniczak Anna,Latała HubertORCID,Nęcka KrzysztofORCID,Kurpaska Sławomir,Książek Leszek

Abstract

The essence of the research was to model the actual energy storage system obtained from photoelectric conversion in a phase change accumulator operating in a foil tunnel. The scope of the work covered the construction of four partial models, i.e., electricity yield from solar radiation conversion for three types of photovoltaic cells (mono- and polycrystalline and CIGS), energy storage in a PCM battery, heat losses in a PCM battery and energy collection from photoelectric conversion in PCM battery. Their construction was based on modelling methods selected on the basis of literature review and previous analyses, i.e., artificial neural networks (ANN), random forest (RF), enhanced regression trees (BRT), MARSplines (MARS), standard multiple regression (SMR), standard C&RT regression trees (CRT), exhaustive CHAID for regression (CHAID). Based on the analysis of the error values (APE, MAPE, ΔESRt), the best quality models were selected and used in the further part of the work. Based on the developed models, a simulation of the influence of the size of the photovoltaic power plant and the type of cells on the process of storing energy from photoelectric conversion in a PCM battery was carried out. For the battery under study, a PV power output of 9 kWp for mono and polycrystalline panels and 13 kWp for CIGS panels is recommended for reasons of energy storage efficiency. The obtained results made it possible to develop a model determining the amount of energy stored in a phase change battery depending on the power of a photovoltaic power plant and variable solar conditions. In order to store the greatest amount of energy, we should choose a source with a capacity to produce at least 70 kWh of electricity per day. In the final stage of the work, the indicators of solar radiation energy storage in the tested phase change accumulator were determined. For the battery tested, the solar energy storage efficiency can reach 12–13% for mono and polycrystalline panels and less than 7% for CIGS panels.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3