A Review on Optimization of Active Power Filter Placement and Sizing Methods

Author:

Buła DawidORCID,Grabowski DariuszORCID,Maciążek MarcinORCID

Abstract

Distortions of current and voltage waveforms from a sinusoidal shape are, not only a source of technical problems, but also have serious economic effects. Their occurrence is related to the common use of loads with nonlinear current-voltage characteristics. These are both high-power loads (most often power electronic switching devices supplying high-power drives), but also widely used low-power loads (power supplies, chargers, energy-saving light sources). The best way to eliminate these distortions is to use active power filters. The cost of these devices is relatively high. Therefore, scientists all over the world are conducting research aimed at developing techniques for the proper placement of these devices, in order to minimize their investment costs. The best solution to this problem is to use optimization techniques. This paper compares the methods and criteria used by the authors of publications dealing with this topic. The summary also indicates a possible direction for further work.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference164 articles.

1. Harmonic problems in renewable and sustainable energy systems: A comprehensive review;Sustain. Energy Technol. Assess.,2021

2. Review of harmonic analysis, modeling and mitigation techniques;Renew. Sustain. Energy Rev.,2017

3. Topological aspects of power quality improvement techniques: A comprehensive overview;Renew. Sustain. Energy Rev.,2016

4. Arrillaga, J., and Watson, N.R. (2003). Power System Harmonics, Wiley.

5. Fuchs, E., and Masoum, M.A.S. (2015). Power Quality in Power Systems and Electrical Machines, Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3