Ensemble Discrete Wavelet Transform and Gray-Level Co-Occurrence Matrix for Microcalcification Cluster Classification in Digital Mammography

Author:

Fanizzi AnnaritaORCID,Basile Teresa Maria,Losurdo LilianaORCID,Bellotti Roberto,Bottigli Ubaldo,Campobasso FrancescoORCID,Didonna Vittorio,Fausto AlfonsoORCID,Massafra Raffaella,Tagliafico Alberto,Tamborra Pasquale,Tangaro SabinaORCID,Lorusso Vito,La Forgia Daniele

Abstract

The presence of clusters of microcalcifications is a primary sign of breast cancer. Their identification is still difficult today for radiologists, and the wrong evaluations involve unnecessary biopsies. In this paper, an automatic tool for characterizing and discriminating clusters of microcalcifications into benign/malignant in digital mammograms is proposed. A set of 104 digital mammograms including microcalcification clusters was randomly extracted from a public available database and manually labeled by our radiologists, obtaining 96 abnormal ROIs. For each so-identified ROI, a multi-scale image decomposition based on the Haar wavelet transform was performed. On the decomposition, a textural features extraction step was carried out both on each sub-image and on the corresponding gray-level co-occurrence matrix. Then, a random forest classifier was employed for classifying microcalcification clusters into benign and malignant. The study found that the most discriminant features extracted from the ROIs decomposition by Haar transform were variance and relative smoothness, whereas as regards the textural features calculated on the GLCMs corresponding to the Haar-decomposed ROI, it emerged that the relationship between the pixels of the sub-image in the diagonal direction had high discriminating power for the classification of microcalcification clusters into benign and malignant. The proposed method was evaluated in cross-validation and performed highly in the prediction of the benign/malignant ROIs, with a mean AUC value of 97.39 ± 0.01 % .

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3