Performance Evaluation and Optimization of a Building-Integrated Photovoltaic/Thermal Solar Water Heating System for Exterior Shading: A Case Study in South China

Author:

Chen Xiao,Wang Wanying,Luo Dandan,Zhu Chihui

Abstract

Building-integrated photovoltaic/thermal (BIPV/T) systems can produce both electrical and thermal energy through the use of photovoltaic/thermal modules integrated with building envelope. Exterior shading is a common way to improve summer indoor thermal environment of the buildings in low latitudes. This study presents a BIPV/T solar water heating system for exterior shading of residences. In order to evaluate and optimize the system performances, a model was developed to simulate the thermal and electrical production of such system. The simulations for an example system in Guangzhou, a city in South China, were performed to investigate the influences of tank installation height and panel tilt angle on system performances. According to simulation results, the suggested tank installation height is 0.6~0.8 m. The shading coefficient ranges from 0.797 to 0.828 when the tilt angle varies from 14° to 38°. The reduction of panel tilt angle causes a certain improvement of shading performance. The annual auxiliary heat reaches the minimum when the panel tilt angle equals 28°, and the annual electric energy output changes little when the panel tilt angle ranges from 20° to 28°. Comprehensively considering thermal, electrical, and shading performances, the suggested panel tilt angle is 20°~28°. The average thermal and electrical efficiencies are respectively 38.25% and 11.95% when the panel tilt angle ranges from 20° to 28°. The presented system is a promising way to provide hot water, electricity, and exterior shading for residences.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3