Distributed Algorithms for Multiple Path Backbone Discovery in Thick Linear Sensor Networks

Author:

Jawhar ImadORCID,Zhang ShengORCID,Wu Jie,Mohamed Nader,Masud Mohammad M.

Abstract

Continued advancements in microprocessors, electronics, and communication technology have led to the design and development of sensing devices with increased functionalities, smaller sizes, larger processing, storage, and communication capabilities, and decreased cost. A large number of these sensor nodes are used in many environmental, infrastructure, commercial, and military monitoring applications. Due to the linearity of a good number of the monitored structures such as oil, gas, and water pipelines, borders, rivers, and roads, the wireless sensor networks (WSNs) that are used to monitor them have a linear topology. This type of WSN is called a linear sensor network (LSN). In this paper, two distributed algorithms for topology discovery in thick LSNs are presented: the linear backbone discovery algorithm (LBD) and the linear backbone discovery algorithm with x backbone paths (LBDx). Both of them try to construct a linear backbone for efficient routing in LSNs. However, the LBD algorithm has the objective of minimizing the number of messages used during the backbone discovery process. On the other hand, the LBDx algorithm focuses on reducing the number of hops of the data messages transmitted from the nodes to the sink. LBD and LBDx exhibit good properties and efficient performance, which are confirmed by extensive simulations.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the Behavior of the Linear Wireless Sensor Networks;2022 International Conference of Science and Information Technology in Smart Administration (ICSINTESA);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3