Abstract
In this paper, we construct four numerical methods to solve the Burgers–Huxley equation with specified initial and boundary conditions. The four methods are two novel versions of nonstandard finite difference schemes (NSFD1 and NSFD2), explicit exponential finite difference method (EEFDM) and fully implicit exponential finite difference method (FIEFDM). These two classes of numerical methods are popular in the mathematical biology community and it is the first time that such a comparison is made between nonstandard and exponential finite difference schemes. Moreover, the use of both nonstandard and exponential finite difference schemes are very new for the Burgers–Huxley equations. We considered eleven different combination for the parameters controlling diffusion, advection and reaction, which give rise to four different regimes. We obtained stability region or condition for positivity. The performances of the four methods are analysed by computing absolute errors, relative errors, L 1 and L ∞ errors and CPU time.
Funder
nelson mandela university
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献