Digital Twins in Livestock Farming

Author:

Neethirajan SureshORCID,Kemp Bas

Abstract

Artificial intelligence (AI), machine learning (ML) and big data are consistently called upon to analyze and comprehend many facets of modern daily life. AI and ML in particular are widely used in animal husbandry to monitor both the animals and environment around the clock, which leads to a better understanding of animal behavior and distress, disease control and prevention, and effective business decisions for the farmer. One particularly promising area that advances upon AI is digital twin technology, which is currently used to improve efficiencies and reduce costs across multiple industries and sectors. In contrast to a model, a digital twin is a digital replica of a real-world entity that is kept current with a constant influx of data. The application of digital twins within the livestock farming sector is the next frontier and has the potential to be used to improve large-scale precision livestock farming practices, machinery and equipment usage, and the health and well-being of a wide variety of farm animals. The mental and emotional states of animals can be monitored using recognition technology that examines facial features, such as ear postures and eye white regions. Used with modeling, simulation and augmented reality technologies, digital twins can help farmers to build more energy-efficient housing structures, predict heat cycles for breeding, discourage negative behaviors of livestock, and potentially much more. As with all disruptive technological advances, the implementation of digital twin technology will demand a thorough cost and benefit analysis of individual farms. Our goal in this review is to assess the progress toward the use of digital twin technology in livestock farming, with the goal of revolutionizing animal husbandry in the future.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3