Abstract
Artificial intelligence (AI), machine learning (ML) and big data are consistently called upon to analyze and comprehend many facets of modern daily life. AI and ML in particular are widely used in animal husbandry to monitor both the animals and environment around the clock, which leads to a better understanding of animal behavior and distress, disease control and prevention, and effective business decisions for the farmer. One particularly promising area that advances upon AI is digital twin technology, which is currently used to improve efficiencies and reduce costs across multiple industries and sectors. In contrast to a model, a digital twin is a digital replica of a real-world entity that is kept current with a constant influx of data. The application of digital twins within the livestock farming sector is the next frontier and has the potential to be used to improve large-scale precision livestock farming practices, machinery and equipment usage, and the health and well-being of a wide variety of farm animals. The mental and emotional states of animals can be monitored using recognition technology that examines facial features, such as ear postures and eye white regions. Used with modeling, simulation and augmented reality technologies, digital twins can help farmers to build more energy-efficient housing structures, predict heat cycles for breeding, discourage negative behaviors of livestock, and potentially much more. As with all disruptive technological advances, the implementation of digital twin technology will demand a thorough cost and benefit analysis of individual farms. Our goal in this review is to assess the progress toward the use of digital twin technology in livestock farming, with the goal of revolutionizing animal husbandry in the future.
Subject
General Veterinary,Animal Science and Zoology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献