Affiliation:
1. School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
Abstract
Dielectric ceramic capacitors are highly regarded for their rapid charge–discharge, high power density, and cyclability in various advanced applications. However, their relatively low energy storage density has prompted intensive research aiming at developing materials with a higher energy density. To enhance energy storage properties, research has focused on modifying ferroelectric materials to induce relaxor ferroelectricity. The present study aims to induce a superparaelectric (SPE) state in relaxor ferroelectrics near room temperature by altering BaTiO3 ferroelectric ceramics using the (Sr,Bi)TiO3-Bi(Mg0.5Ti0.5)O3 system ((1−x)BT-x(SBT-BMT)). X-ray diffraction and Raman spectroscopy analysis demonstrated a shift in the crystal structure from tetragonal to cubic with an increasing x content. Notably, the compositions (except x = 0.1) satisfied the criteria for the SPE state manifestation near room temperature. The x = 0.2 specimen displayed characteristics at the boundary between the relaxor ferroelectric and SPE phases, while x ≥ 0.3 specimens exhibited increased SPE state fractions. Despite reduced maximum polarization, x ≥ 0.3 specimens showcased impressive energy storage capabilities, attributed to the enhanced SPE state, especially for x = 0.3, with impressive characteristics: a recoverable energy density (Wrec) of ~1.12 J/cm3 and efficiency (η) of ~94% at 170 kV/cm applied field. The good stability after the charge–discharge cycles reinforces the significance of the SPE phase in augmenting energy storage in relaxor ferroelectric materials, suggesting potential applications in high-energy density storage devices.
Funder
National Research Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献