Abstract
Marine oil spills are one of the most serious problems of marine environmental pollution. Hyperspectral remote sensing has been proven to be an effective tool for monitoring marine oil spills. To make full use of spectral and spatial features, this study proposes a spectral-spatial features integrated network (SSFIN) and applies it for hyperspectral detection of a marine oil spill. Specifically, 1-D and 2-D convolutional neural network (CNN) models have been employed for the extraction of the spectral and spatial features, respectively. During the stage of spatial feature extraction, three consecutive convolution layers are concatenated to achieve the fusion of multilevel spatial features. Next, the extracted spectral and spatial features are concatenated and fed to the fully connected layer so as to obtain the joint spectral-spatial features. In addition, L2 regularization is applied to the convolution layer to prevent overfitting, and dropout operation is employed to the full connection layer to improve the network performance. The effectiveness of the method proposed here has firstly been verified on the Pavia University dataset with competitive classification experimental results. Eventually, the experimental results upon oil spill datasets demonstrate the strong capacity of oil spill detection by this method, which can effectively distinguish thick oil film, thin oil film, and seawater.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
the Key Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province under Grant
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献