A Spectral-Spatial Features Integrated Network for Hyperspectral Detection of Marine Oil Spill

Author:

Wang BinORCID,Shao Qifan,Song Dongmei,Li Zhongwei,Tang Yunhe,Yang Changlong,Wang Mingyue

Abstract

Marine oil spills are one of the most serious problems of marine environmental pollution. Hyperspectral remote sensing has been proven to be an effective tool for monitoring marine oil spills. To make full use of spectral and spatial features, this study proposes a spectral-spatial features integrated network (SSFIN) and applies it for hyperspectral detection of a marine oil spill. Specifically, 1-D and 2-D convolutional neural network (CNN) models have been employed for the extraction of the spectral and spatial features, respectively. During the stage of spatial feature extraction, three consecutive convolution layers are concatenated to achieve the fusion of multilevel spatial features. Next, the extracted spectral and spatial features are concatenated and fed to the fully connected layer so as to obtain the joint spectral-spatial features. In addition, L2 regularization is applied to the convolution layer to prevent overfitting, and dropout operation is employed to the full connection layer to improve the network performance. The effectiveness of the method proposed here has firstly been verified on the Pavia University dataset with competitive classification experimental results. Eventually, the experimental results upon oil spill datasets demonstrate the strong capacity of oil spill detection by this method, which can effectively distinguish thick oil film, thin oil film, and seawater.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

the Key Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3