Abstract
The number of road crashes continues to rise significantly in Thailand. Curve segments on two-lane rural roads are among the most hazardous locations which lead to road crashes and tremendous economic losses; therefore, a detailed examination of its risk is required. This study aims to develop crash prediction models using Safety Performance Functions (SPFs) as a tool to identify the relationship among road alignment, road geometric and traffic conditions, and crash frequency for two-lane rural horizontal curve segments. Relevant data associated with 86,599 curve segments on two-lane rural road networks in Thailand were collected including road alignment data from a GPS vehicle tracking technology, road attribute data from rural road asset databases, and historical crash data from crash reports. Safety Performance Functions (SPFs) for horizontal curve segments were developed, using Poisson regression, negative binomial regression, and calibrated Highway Safety Manual models. The results showed that the most significant parameter affecting crash frequency is lane width, followed by curve length, traffic volume, curve radius, and types of curves (i.e., circular curves, compound curves, reverse curves, and broken-back curves). Comparing among crash prediction models developed, the calibrated Highway Safety Manual SPF outperforms the others in prediction accuracy.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference49 articles.
1. Global Status Report on Road Safety 2018,2018
2. Review of Thailand’s Status against Voluntary Global Targets for Road Safety Risk Factors and Service Delivery Mechanism,2020
3. Accident Report Management System of Department of Rural Roads of Thailand
http://arms.drr.go.th/
4. Analysis of Accident Severity for Curved Roadways Based on Bayesian Networks
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献