Is There Spatial and Temporal Variability in the Response of Plant Canopy and Trunk Growth to Climate Change in a Typical River Basin of Arid Areas

Author:

Yuan Kaiye,Xu Hailiang,Zhang Guangpeng

Abstract

The response of plants to climate change has become a topical issue. However, there is no consensus on the synergistic processes of the canopy and trunk growth within different vegetation types, or on the consistency of the response of the canopy and trunk to climate change. This paper is based on Normalized Difference Vegetation Index (NDVI), tree-ring width index (TRW) and climate data from the Irtysh River basin, a sensitive area for climate change in Central Asia. Spatial statistical methods and correlation analysis were used to analyze the spatial and temporal trends of plants and climate, and to reveal the differences in the canopy and trunk response mechanisms to climate within different vegetation types. The results show a warming and humidifying trend between 1982 and 2015 in the study area, and NDVI and TRW increases in different vegetation type zones. On an interannual scale, temperature is the main driver of the canopy growth in alpine areas and precipitation is the main limiting factor for the canopy growth in lower altitude valley and desert areas. The degree of response of the trunk to climatic factors decreases with increasing altitude, and TRW is significantly correlated with mean annual temperature, precipitation and SPEI in desert areas. On a monthly scale, the earlier and longer growing season due to the accumulation of temperature and precipitation in the early spring and late autumn periods contributes to two highly significant trends of increase in the canopy from March to May and August to October. Climatic conditions during the growing season are the main limiting factor for the growth of the trunk, but there is considerable variation in the driving of the trunk in different vegetation type zones. The canopy growth is mainly influenced by climatic factors in the current month, while there is a 1–2-month lag effect in the response of the trunk to climatic factors. In addition, the synergy between the canopy and the trunk is gradually weakened with increasing altitude (correlation coefficient is 0.371 in alpine areas, 0.413 in valley areas and 0.583 in desert areas). These findings help to enrich the understanding of the response mechanisms to climate change in different vegetation type zones and provide a scientific basis for the development of climate change response measures in Central Asia.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3