LPDNet: A Lightweight Network for SAR Ship Detection Based on Multi-Level Laplacian Denoising

Author:

Zhao Congxia1,Fu Xiongjun12,Dong Jian1,Feng Cheng1,Chang Hao1ORCID

Affiliation:

1. Beijing Institute of Technology, Beijing 100081, China

2. Tangshan Research Institute of BIT, Tangshan 063000, China

Abstract

Intelligent ship detection based on synthetic aperture radar (SAR) is vital in maritime situational awareness. Deep learning methods have great advantages in SAR ship detection. However, the methods do not strike a balance between lightweight and accuracy. In this article, we propose an end-to-end lightweight SAR target detection algorithm, multi-level Laplacian pyramid denoising network (LPDNet). Firstly, an intelligent denoising method based on the multi-level Laplacian transform is proposed. Through Convolutional Neural Network (CNN)-based threshold suppression, the denoising becomes adaptive to every SAR image via back-propagation and makes the denoising processing supervised. Secondly, channel modeling is proposed to combine the spatial domain and frequency domain information. Multi-dimensional information enhances the detection effect. Thirdly, the Convolutional Block Attention Module (CBAM) is introduced into the feature fusion module of the basic framework (Yolox-tiny) so that different weights are given to each pixel of the feature map to highlight the effective features. Experiments on SSDD and AIR SARShip-1.0 demonstrate that the proposed method achieves 97.14% AP with a speed of 24.68FPS and 92.19% AP with a speed of 23.42FPS, respectively, with only 5.1 M parameters, which verifies the accuracy, efficiency, and lightweight of the proposed method.

Funder

111 Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3