Abstract
The world record of the hammer throw has not been broken since 1986. This stagnation is multifactorial. One dominant factor could be the lack of evidence-based scientific/biofeedback training. This study aims to identify key parameters influencing throw quality and structure a new digital method for biofeedback training. Wire-tension measurement and 3D motion capture technology (VICON 12-camera system) were applied in quantifying and comparing throws of a national-level and a college-level athlete. Our results reveal that multi-joint coordination influences heavily on wire-tension generation. Four phases, i.e., initiation, transition, turns, and throw, play various roles in evaluating the quality of a throw. Among them, the transition, the third turn, and the throw display explosive/rapid increases of tension. For improving the effectiveness of the skill, the whip-like control and proper SSC (stretch-shortening cycle) of muscle groups involved should be established through years of training. Furthermore, our study unveils that quick and complex full-body control could be quantified and characterized by four key parameters: wire-tension, hand- and hip-height, and trunk tilt. Hence, a wearable digital device with tension and three Inertial Measurement Unit (IMU) sensors would have great potential in realizing real-time biomechanical feedback training in practice for evaluating and improving the efficiency of various training programs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献