Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation

Author:

Diakakis Michalis1ORCID,Mavroulis Spyridon1ORCID,Vassilakis Emmanuel2ORCID,Chalvatzi Vassiliki1

Affiliation:

1. Department of Dynamic Tectonic and Applied Geology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimioupoli Zografou, Greece

2. Department of Geography and Climatology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimioupoli Zografou, Greece

Abstract

Post-fire geomorphic processes and associated risks are an important threat in Mediterranean environments. Currently, post-fire mass movement prediction has limited applications across the Mediterranean despite the abundance of both forest fires and landslide/debris flow disasters. This work applies a debris flow generation likelihood model to evaluate the probability of mass movement phenomena in different catchments of a burnt area, after a catastrophic fire near Schinos (Attica, Greece) in 2021. Then, it uses field observations from the area, recording mass movement phenomena after high-intensity rainfall events, to validate the results. The findings show that the model is successful in determining the probability of debris flow generation in the 21 basins of the study area, ranging from 0.05 to 0.893. The probability values show a statistically significant correlation (sig. = 0.001) with the actual debris flow occurrences in the area, and satisfactory results in terms of the model’s predictive ability, functioning well within the particular geo-environmental characteristics of the Mediterranean environment. The results establish the reliability of the approach as a tool to assess mass movement risks in a region with an abundance of post-fire related hazards and disastrous events.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference99 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3