Investigation of a Serine Protease Inhibitor Active in the Infectious Stage of the Human Liver Fluke Opisthorchis viverrini

Author:

Salang Rosnanee1,Phadungsil Wansika1,Geadkaew-Krenc Amornrat1ORCID,Grams Rudi1ORCID

Affiliation:

1. Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand

Abstract

Serine protease inhibitors (serpins) participate in the regulation of inflammation, blood coagulation, and complement activation in humans. This research aimed to identify and characterize such inhibitors of the human liver fluke Opisthorchis viverrini. Parasite proteins that might contribute to the modulation of host physiology are of particular interest, especially as chronic opisthorchiasis increases the risk of developing biliary cancer. BLAST was used to find hypothetical serpins predicted from the parasite genome data. RNA extraction and reverse transcriptase PCR were used to isolate a serpin cDNA and to determine developmental transcript abundance. The evolutionary relation to other trematode serpins was revealed by phylogenetic analysis. Recombinant serpin was expressed in Escherichia coli and used to test the immunoreactivity of human opisthorchiasis sera and the inhibition of human serine proteases. A substantial serpin family with high sequence divergence among the members was found in the genus Opisthorchis. A serpin, different from previously analyzed trematode serpins, was cloned. The transcript was only detected in metacercariae and newly excysted juveniles. Human opisthorchiasis sera showed statistically significant reactivity to recombinant serpin. The serpin caused moderate inhibition of thrombin and low inhibition of kallikrein and chymotrypsin. This parasite serpin could be further evaluated as a diagnostic tool for early infection. Kallikrein and thrombin are involved in fibrinolysis; therefore, further research should explore the effects of the parasite serpin on this process.

Funder

Thailand Science Research and Innovation Fundamental Fund

Thammasat University Research Unit in Parasitic Diseases

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3