Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology

Author:

Dadar MaryamORCID,Alamian Saeed,Brangsch HankaORCID,Elbadawy MohamedORCID,Elkharsawi Ahmed R.,Neubauer Heinrich,Wareth GamalORCID

Abstract

Brucellosis is a common zoonotic disease in Iran. Antimicrobial-resistant (AMR) Brucella isolates have been reported from different developing countries, posing an imminent health hazard. The objective of this study was to evaluate AMR and virulence-associated factors in Brucella isolates recovered from humans and animals in different regions of Iran using classical phenotyping and next generation sequencing (NGS) technology. Our findings revealed that B. melitensis is the most common species in bovines, small ruminants and camels. B. abortus was isolated only from one human case. Probable intermediate or resistant phenotype patterns for rifampicin, trimethoprim-sulfamethoxazole, ampicillin-sulbactam and colistin were found. Whole genome sequencing (WGS) identified mprF, bepG, bepF, bepC, bepE, and bepD in all isolates but failed to determine other classical AMR genes. Forty-three genes associated with five virulence factors were identified in the genomes of all Brucella isolates, and no difference in the distribution of virulence-associated genes was found. Of them, 27 genes were associated with lipopolysaccharide (LPS), 12 genes were related to a type IV secretion system (virB1-B12), two were associated with the toll-interleukin-1 receptor (TIR) domain-containing proteins (btpA, btpB), one gene encoded the Rab2 interacting conserved protein A (ricA) and one was associated with the production of cyclic β-1,2 glucans (cgs). This is the first investigation reporting the molecular-based AMR and virulence factors in brucellae isolated from different animal hosts and humans in Iran. Iranian B. abortus and B. melitensis isolates are still in vitro susceptible to the majority of antibiotics used for the treatment of human brucellosis. WGS failed to determine classical AMR genes and no difference was found in the distribution of virulence-associated genes in all isolates. Still, the absence of classical AMR genes in genomes of resistant strains is puzzling, and investigation of phenotypic resistance mechanisms at the proteomic and transcriptomic levels is needed.

Funder

Iran National Science Foundation

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference77 articles.

1. One health approach to tackle brucellosis: A systematic review;Ghanbari;Trop. Med. Health,2020

2. Contamination of milk and dairy products by Brucella species: A global systematic review and meta-analysis;Dadar;Food Res. Int.,2020

3. Brucellosis and international travel;Memish;J. Travel Med.,2004

4. Comparisons of brucellosis between human and veterinary medicine;Hull;Infect. Ecol. Epidemiol.,2018

5. Contact rates and exposure to inter-species disease transmission in mountain ungulates;Richomme;Epidemiol. Infect.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3