Morphological Description of the Early Events during the Invasion of Acanthamoeba castellanii Trophozoites in a Murine Model of Skin Irradiated under UV-B Light

Author:

Hernández-Jasso Mariana,Hernández-Martínez DoloresORCID,Avila-Acevedo José Guillermo,Benítez-Flores José del Carmen,Gallegos-Hernández Isis Amara,García-Bores Ana MaríaORCID,Espinosa-González Adriana MontserratORCID,Villamar-Duque Tomás Ernesto,Castelan-Ramírez IsmaelORCID,González-Valle María del Rosario,Omaña-Molina MaritzaORCID

Abstract

Skin infections have been associated with Acanthamoeba, nevertheless the events during skin invasion and UV-B light effects on it are unknown. The early morphological events of Acanthamoeba castellanii skin invasion are shown in SKH-1 mice that were chronically UV-B light irradiated. Mice that developed skin lesions (group 1) were topical and intradermally inoculated with A. castellanii trophozoites and sacrificed 48 h or 18 days later. Mice that showed no skin lesions (group 2) were intradermally inoculated and sacrificed 24, 48 or 72 h later. Mice ventral areas were considered controls with and without trophozoites intradermally inoculated. Skin samples were processed by histological and immunohistochemistry techniques. In group 1, trophozoites were immunolocalized in dermal areas, hair cysts, sebaceous glands, and blood vessels, and collagen degradation was observed. One of these mice shown trophozoites in the spleen, liver, and brain. In group 2, few trophozoites nearby collagenolytic activity zones were observed. In control samples, nor histological damage and no trophozoites were observed. Adherence and collagenolytic activity by A. castellanii were corroborated in vitro. We can infer that UV-B light irradiated skin could favor A. castellanii invasiveness causing damage in sites as far away as the brain, confirming the invasive capacity and pathogenic potential of these amphizoic amoebae.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3