A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System

Author:

Hadj Salah Zahra Bel1ORCID,Krim Saber23ORCID,Hajjaji Mohamed Ali14,Alshammari Badr M.5ORCID,Alqunun Khalid5,Alzamil Ahmed5ORCID,Guesmi Tawfik5ORCID

Affiliation:

1. Electronic and Micro-Electronic Laboratory, LR99ES30, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia

2. Laboratory of Automatic, Electrical Systems and Environment, National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia

3. Department of Technology, Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Kairouan 3100, Tunisia

4. Higher Institute of Applied Sciences and Technology, University of Sousse, Sousse 4003, Tunisia

5. Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 2240, Saudi Arabia

Abstract

The impact of Partial Shading Conditions (PSCs) significantly influences the output of Photovoltaic Systems (PVSs). Under PSCs, the Power-Voltage (P-V) characteristic of the PVS unveils numerous power peaks, inclusive of local maxima and a global maximum. The latter represents the optimum power point. Traditional Maximum Power Point Tracking (MPPT) algorithms struggle to track the Global Maximum Power Point (GMPP). To address this, our study emphasizes the creation of a novel algorithm capable of identifying the GMPP. This approach combines the Cuckoo Search (CS) MPPT algorithm with an Integral Super-Twisting Sliding Mode Controller (STSMC) using their benefits to enhance the PVS performance under PSCs in terms of high efficiency, low power losses, and high-speed convergence towards the GMPP. The STSMC is a second-order Sliding Mode Control strategy that employs a continuous control action that attenuates the “chattering” phenomenon, caused when the first-order SMC technique is employed. Indeed, the proposed CS-STSMC-MPPT algorithm consists of two parts. The first one is based on the CS algorithm used for scanning the power-voltage curve to identify the GMPP, and subsequently generating the associated optimal voltage reference. The second part aims to track the voltage reference by manipulating the duty cycle of the boost converter. The proposed CS-STSMC-MPPT algorithm is featured by its strength against uncertainties and modeling errors. The obtained simulation results underline a high convergence speed and an excellent precision of the proposed method in identifying and tracking the GMPP with high efficiency under varying shading scenarios. For comparative purposes, this method is set against the hybrid CS-Proportional Integral Derivative, the conventional CS, the Particle Swarm Optimization, and the Perturb and Observe algorithms under different PSCs, including zero, weak, and severe shading. Simulation conducted in the Matlab/Simulink environment confirms the superior performance of the proposed CS-STSMC-MPPT algorithm in terms of precision, convergence speed, efficiency, and resilience.

Funder

Scientific Research Deanship at the University of Ha’il—Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3