The Attachment of Carbon Nanotubes to Atomic Force Microscopy Tips Using the Pick-Up Method

Author:

Gibson Christopher T.ORCID

Abstract

In the last 30 years research has shown that the resolution and reproducibility of data acquired using the atomic force microscope (AFM) can be improved through the development of new imaging modes or by modifying the AFM tip. One method that has been explored since the 1990s is to attach carbon nanotubes (CNT) to AFM tips. CNTs possess a small diameter, high aspect ratio, high strength and demonstrate a high degree of wear resistance. While early indications suggested the widespread use of these types of probes would be routine this has not been the case. A number of methods for CNT attachment have been proposed and explored including chemical vapor deposition (CVD), dielectrophoresis and manual attachment inside a scanning electron microscope (SEM). One of the earliest techniques developed is known as the pick-up method and involves adhering CNTs to AFM tips by simply scanning the AFM tip, in tapping mode, across a CNT-covered surface until a CNT attaches to the AFM tip. In this work we will further investigate how, for example, high force tapping mode imaging can improve the stability and success rate of the pick-up method. We will also discuss methods to determine CNT attachment to AFM probes including changes in AFM image resolution, amplitude versus distance curves and SEM imaging. We demonstrate that the pick-up method can be applied to a range of AFM probes, including contact mode probes with relatively soft spring constants (0.28 N/m). Finally, we demonstrate that the pick-up method can be used to attach CNTs to two AFM tips simultaneously. This is significant as it demonstrates the techniques potential for attaching CNTs to multiple AFM tips which could have applications in AFM-based data storage, devices such as the Snomipede, or making CNT-AFM tips more commercially viable.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3