Numerical Investigation of the Formation of a Failure Cone during the Pullout of an Undercutting Anchor

Author:

Jonak Józef1ORCID,Karpiński Robert1ORCID,Wójcik Andrzej1ORCID,Siegmund Michał2ORCID

Affiliation:

1. Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland

2. KOMAG Institute of Mining Technology, Pszczyńska 37, 44-100 Gliwice, Poland

Abstract

Previously published articles on anchors have mainly focused on determining the pullout force of the anchor (depending on the strength parameters of the concrete), the geometric parameters of the anchor head, and the effective anchor depth. The extent (volume) of the so-called failure cone has often addressed as a secondary matter, serving only to approximate the size of the zone of potential failure of the medium in which the anchor is installed. For the authors of these presented research results, from the perspective of evaluating the proposed stripping technology, an important aspect was the determination of the extent and volume of the stripping, as well as the determination of why the defragmentation of the cone of failure favors the removal of the stripping products. Therefore, it is reasonable to conduct research on the proposed topic. Thus far, the authors have shown that the ratio of the radius of the base of the destruction cone to the anchorage depth is significantly larger than in concrete (~1.5) and ranges from 3.9–4.2. The purpose of the presented research was to determine the influence of rock strength parameters on the mechanism of failure cone formation, including, in particular, the potential for defragmentation. The analysis was conducted with the finite element method (FEM) using the ABAQUS program. The scope of the analysis included two categories of rocks, i.e., those with low compressive strength (<100 MPa) and strong rocks (>100 MPa). Due to the limitations of the proposed stripping method, the analysis was conducted for an effective anchoring depth limited to 100 mm. It was shown that for anchorage depths <100 mm, for rocks with high compressive strength (above 100 MPa), there is a tendency to spontaneously generate radial cracks, leading to the fragmentation of the failure zone. The results of the numerical analysis were verified by field tests, yielding convergent results regarding the course of the de-fragmentation mechanism. In conclusion, it was found that in the case of gray sandstones, with strengths of 50–100 MPa, the uniform type of detachment (compact cone of detachment) dominates, but with a much larger radius of the base (a greater extent of detachment on the free surface).

Funder

Polish National Center for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3