Evaluation of Synthetic-Temporal Imagery as an Environmental Covariate for Digital Soil Mapping: A Case Study in Soils under Tropical Pastures

Author:

Avalos Fabio Arnaldo Pomar1ORCID,de Menezes Michele Duarte2,Acerbi Júnior Fausto Weimar3ORCID,Curi Nilton2,Avanzi Junior Cesar2ORCID,Silva Marx Leandro Naves2ORCID

Affiliation:

1. Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura, Universidade Estadual de Campinas, Campinas 13083-886, SP, Brazil

2. Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras 37203-202, MG, Brazil

3. Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras 37203-202, MG, Brazil

Abstract

Digital soil maps are paramount for supporting environmental process analysis, planning for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series of surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed soil survey, along with a stack of Landsat 8 SR data and a rainfall time series, were analyzed to evaluate the influence of soil on the temporal patterns of vegetation greenness, assessed using the normalized difference vegetation index (NDVI). Based on these relationships, imagery depicting land surface phenology (LSP) metrics and other soil-forming factors proxies were evaluated as environmental covariates for DSM. The random forest algorithm was applied as a predictive model to relate soils and environmental covariates. The study focused on four soils typical of tropical conditions under pasture cover. Soil parent material and topography covariates were found to be similarly important to LSP metrics, especially those LSP images related to the seasonal availability of water to plants, registering significant contributions to the random forest model. Stronger effects of rainfall seasonality on LSP were observed for the Red Latosol (Ferralsol). The results of this study demonstrate that the addition of temporal variability of vegetation greenness can be used to assess soil subsurface processes and assist in DSM.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológic

Fundação de Amparo à Pesquisa de Minas Gerais

Publisher

MDPI AG

Reference55 articles.

1. On Digital Soil Mapping;McBratney;Geoderma,2003

2. Pedology and digital soil mapping (DSM);Ma;Eur. J. Soil Sci.,2019

3. A note on knowledge discovery and machine learning in digital soil mapping;Wadoux;Eur. J. Soil Sci.,2020

4. Digital soil class mapping in Brazil: A systematic review;Coelho;Sci. Agric.,2020

5. Soil Science Division Staff (2017). Soil Survey Manual, Handbook No. 18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3