Research on a Regional Landslide Early-Warning Model Based on Machine Learning—A Case Study of Fujian Province, China

Author:

Liu Yanhui,Huang Junbao,Xiao Ruihua,Ma Shiwei,Zhou Pinggen

Abstract

China’s landslide disasters are serious, and regional landslide disaster early-warning is one of the important means of disaster prevention and mitigation. The traditional regional landslide disaster early-warning model, however, is limited by the complex landslide induction mechanism, limited data accumulation, and insufficient big data analysis methods, and has problems such as limited early-warning accuracy and insufficient refinement. In this paper, a machine learning method was introduced into the field of regional landslide disaster warning. From the model construction process of training sample-set construction, sample learning and training, model parameter optimization, model preservation, warning output, and so on, a method for constructing a regional landslide early-warning model based on machine learning was systematically proposed. In the sample learning and training, 80% of the training sample-set was used as the training set, and 20% was used as the test set for five-fold cross validation. The Bayesian Optimization algorithm was used to optimize the model parameters, and the accuracy, ROC curve, and AUC value were used to verify the model accuracy and model generalization ability. With China’s Fujian province as an example, based on nine years of geological and meteorological data (2010–2018), geological environment factors, factors of hazard-affected bodies and historical disaster situations, and rainfall-induced factors in four categories, a total of 26 indicators were used as input characteristic parameters. Six machine learning algorithms were adopted to improve model training; the results showed that the Random Forest algorithm performed the best, giving an accuracy of 92.3%, and was the model with the best generalization ability (AUC was 0.955). The second best was the Artificial Neural Network model, with an accuracy of 0.937 and an AUC of 0.935. Next were the Nearest Neighbor model, the Logistic Regression model, and the Support Vector Machine; the poorest results were from the Decision Tree model. Finally, the typical rainfall-type landslide disaster process in Fujian Province was selected as an example to verify the Random Forest algorithm model. The results showed that compared with the early-warning results of the original explicit statistical model, the hit rate of the new model was 6 times, or equal to that of the original model, and the landslide density in the early-warning area of the new model was 1.6–1.7 times that of the original model. Preliminary verification showed that the new model based on the Random Forest method has obvious advantages, a higher hit rate and a smaller warning area, and can achieve more accurate warnings. The follow-up will continue to track the new landslide disaster situation in the study area and carry out model verification and correction.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

Reference38 articles.

1. Geographical landslide early warning systems;Guzzetti;Earth Sci. Rev.,2020

2. Early warning theory for regional geo-hazards and design of explicit statistical system;Liu;Hydrogeol. Eng. Geol.,2007

3. Liu, C.-Z., Liu, Y.-H., Wen, M.-S., Tang, C., and Xue, Q.-W. (2009). Method and Application of Regional Warning for Geo-Hazards in China, Geological Publishing.

4. Early warning for regional geo-hazards during 2003–2012, China;Liu;Chin. J. Geol. Hazard Control.,2015

5. Preliminary study of geo-hazards regional early warning based on explicit statistical theory;Liu;Geol. China,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3