Author:
Maharjan Amit Kumar,Mori Kazuhiro,Toyama Tadashi
Abstract
Constructed wetlands (CWs) are an effective technology to remove organic compounds and nitrogen (N) from wastewaters and contaminated environmental waters. However, the feasibility of CWs for ammonium-N (NH4+-N)-contaminated groundwater treatment is unclear. In this study, zeolite-based laboratory-scale CW was operated as a tidal flow CW with a cycle consisting of 21-h flooded and 3-h rest, and used to treat NH4+-N (30 mg L−1) contaminated groundwater. In addition to NH4+-N, nitrite (NO2−-N) and nitrate (NO3−-N) were also not detected in the effluents from the tidal flow CW. The N removal constant remained high for a longer period of time compared to the continuous flow CW. The higher and more sustainable N removal of the tidal flow CW was due to the in-situ biological regeneration of zeolite NH4+-N adsorption capacity. Vegetation of common reeds in tidal flow zeolite-based CW enhanced nitrification and heterotrophic denitrification activities, and increased the functional genes of nitrification (AOB-amoA and nxrA) and denitrification (narG, nirK, nirS, and nosZ) by 2‒3 orders of magnitude, compared to CW without vegetation. The results suggest that the combination of zeolite substrate, tidal flow, and vegetation is key for the highly efficient and sustainable N removal from NH4+-N contaminated groundwater.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献