1. Bronstein, M.M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv.
2. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., and Leskovec, J. (2018, January 19–23). Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM International Conference on Knowledge Discovery & Data Mining, London, UK.
3. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R.P. (2015, January 7–12). Convolutional Networks on Graphs for Learning Molecular Fingerprints. Proceedings of the Advances in Neural Information Processing Systems, Montreal, Canada.
4. Neural Message Passing for Quantum Chemistry;Gilmer;Proceedings of the 34th International Conference on Machine Learning,2017
5. NEVAE: A Deep Generative Model for Molecular Graphs;Samanta;J. Mach. Learn. Res.,2020