Novel Salinity Modeling Using Deep Learning for the Sacramento–San Joaquin Delta of California

Author:

Qi SiyuORCID,He MinxueORCID,Bai Zhaojun,Ding Zhi,Sandhu Prabhjot,Chung Francis,Namadi Peyman,Zhou Yu,Hoang Raymond,Tom Bradley,Anderson Jamie,Roh Dong Min

Abstract

Water resources management in estuarine environments for water supply and environmental protection typically requires estimates of salinity for various flow and operational conditions. This study develops and applies two novel deep learning (DL) models, a residual long short-term memory (Res-LSTM) network, and a residual gated recurrent unit (Res-GRU) model, in estimating the spatial and temporal variations of salinity. Four other machine learning (ML) models, previously developed and reported, consisting of multi-layer perceptron (MLP), residual network (ResNet), LSTM, and GRU are utilized as the baseline models to benchmark the performance of the two novel models. All six models are applied at 23 study locations in the Sacramento–San Joaquin Delta (Delta), the hub of California’s water supply system. Model input features include observed or calculated tidal stage (water level), flow and salinity at model upstream boundaries, salinity control gate operations, crop consumptive use, and pumping for the period of 2001–2019. Meanwhile, field observations of salinity at the study locations during the same period are also utilized for the development of the predictive use of the models. Results indicate that the proposed DL models generally outperform the baseline models in simulating and predicting salinity on both daily and hourly scales at the study locations. The absolute bias is generally less than 5%. The correlation coefficients and Nash–Sutcliffe efficiency values are close to 1. Particularly, Res-LSTM has slightly superior performance over Res-GRU. Moreover, the study investigates the overfitting issues of both the DL and baseline models. The investigation indicates that overfitting is not notable. Finally, the study compares the performance of Res-LSTM against that of an operational process-based salinity model. It is shown Res-LSTM outperforms the process-based model consistently across all study locations. Overall, the study demonstrates the feasibility of DL-based models in supplementing the existing operational models in providing accurate and real-time estimates of salinity to inform water management decision making.

Funder

California Department of Water Resources and the University of California

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3