Compressed Deep Learning Models for Wearable Atrial Fibrillation Detection through Attention

Author:

Mäkynen Marko1,Ng G. Andre23ORCID,Li Xin1,Schlindwein Fernando S.1ORCID,Pearce Timothy C.1ORCID

Affiliation:

1. Biomedical Engineering Research Group, School of Engineering, University of Leicester, Leicester LE1 7RH, UK

2. National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE5 4PW, UK

3. Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK

Abstract

Deep learning (DL) models have shown promise for the accurate detection of atrial fibrillation (AF) from electrocardiogram/photoplethysmography (ECG/PPG) data, yet deploying these on resource-constrained wearable devices remains challenging. This study proposes integrating a customized channel attention mechanism to compress DL neural networks for AF detection, allowing the model to focus only on the most salient time-series features. The results demonstrate that applying compression through channel attention significantly reduces the total number of model parameters and file size while minimizing loss in detection accuracy. Notably, after compression, performance increases for certain model variants in key AF databases (ADB and C2017DB). Moreover, analyzing the learned channel attention distributions after training enhances the explainability of the AF detection models by highlighting the salient temporal ECG/PPG features most important for its diagnosis. Overall, this research establishes that integrating attention mechanisms is an effective strategy for compressing large DL models, making them deployable on low-power wearable devices. We show that this approach yields compressed, accurate, and explainable AF detectors ideal for wearables. Incorporating channel attention enables simpler yet more accurate algorithms that have the potential to provide clinicians with valuable insights into the salient temporal biomarkers of AF. Our findings highlight that the use of attention is an important direction for the future development of efficient, high-performing, and interpretable AF screening tools for wearable technology.

Funder

NIHR Leicester Biomedical Research Centre

British Heart Foundation

Medical Research Council Biomedical Catalyst Developmental Pathway Funding Scheme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3