Author:
Liu Xiaodong,Yang Yang,Hou Siyou,Men Yihan,Han Yuanhuai
Abstract
Panicle traits are important factors affecting yield, and their improvement has long been a critical goal in foxtail millet breeding. In order to understand the genetic basis of panicle formation, a large-scale genome-wide association study (GWAS) was performed in this study for six panicle-related traits based on 706,646 high-polymorphism SNP loci in 407 accessions. As a result, 87 quantitative trait loci (QTL) regions with a physical distance of less than 100 kb were detected to be associated with these traits in three environments. Among them, 27 core regions were stably detected in at least two environments. Based on rice–foxtail millet homologous comparison, expression, and haplotype analysis, 27 high-confidence candidate genes in the QTL regions, such as Si3g11200 (OsDER1), Si1g27910 (OsMADS6), Si7g27560 (GS5), etc., affected panicle-related traits by involving multiple plant growth regulator pathways, a photoperiod response, as well as panicle and grain development. Most of these genes showed multiple effects on different panicle-related traits, such as Si3g11200 affecting all six traits. In summary, this study clarified a strategy based on the integration of GWAS, a homologous comparison, and haplotype analysis to discover the genomic regions and candidate genes for important traits in foxtail millet. The detected QTL regions and candidate genes could be further used for gene clone and marker-assisted selection in foxtail millet breeding.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献