Abstract
In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203–323 K range, with an observed maximum relative sensitivity of 2.06% K−1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene → europium(III) energy transfer, even though there is no chemical bonding between species.
Funder
São Paulo Research Foundation
National Council for Scientific and Technological Development
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference94 articles.
1. Biological Detection by Optical Oxygen Sensing;Chem. Soc. Rev.,2013
2. Imaging of Oxygen and Hypoxia in Cell and Tissue Samples;Cell. Mol. Life Sci.,2018
3. Ultra-Sensitive Optical Oxygen Sensors for Characterization of Nearly Anoxic Systems;Nat. Commun.,2014
4. HIF1 and Oxygen Sensing in the Brain;Nat. Rev. Neurosci.,2004
5. Quantitative Measurement and Visualization of Biofilm O2 Consumption Rates in Membrane Filtration Systems;J. Memb. Sci.,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献