Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus

Author:

He ZhiORCID,Zheng Li,Chen Qiqi,Xiong Sen,He Zhide,Hu Jiaxiang,Ma Zhijun,Zhang Qian,He Jiayang,Ye Lijuan,He Liang,Luo Jie,Gu Xiaobin,Zhang Mingwang,Tang ZitingORCID,Jiao Yuanyuan,Pu Yong,Xiong Jinxin,Gao Kuo,Lai Bolin,Yang ShiyongORCID,Yang Deying,Yan Taiming

Abstract

Bmpr2 plays a central role in the regulation of reproductive development in mammals, but its role during ovarian development in fish is still unclear. To ascertain the function of bmpr2 in ovarian development in the ricefield eel, we isolated and characterized the bmpr2 cDNA sequence; the localization of Bmpr2 protein was determined by immunohistochemical staining; and the expression patterns of bmpr2 in ovarian tissue incubated with FSH and hCG in vitro were analyzed. The full-length bmpr2 cDNA was 3311 bp, with 1061 amino acids encoded. Compared to other tissues, bmpr2 was abundantly expressed in the ovary and highly expressed in the early yolk accumulation (EV) stages of the ovary. In addition, a positive signal for Bmpr2 was detected in the cytoplasm of oocytes in primary growth (PG) and EV stages. In vitro, the expression level of gdf9, the ligand of bmpr2, in the 10 ng/mL FSH treatment group was significantly higher after incubation for 4 h than after incubation for different durations. However, bmpr2 expression in the 10 ng/mL FSH treatment group at 2 h, 4 h and 10 h was significantly lower. Importantly, the expression level of bmpr2 and gdf9 in the 100 IU/mL hCG group had similar changes that were significantly decreased at 4 h and 10 h. In summary, Bmpr2 might play a pivotal role in ovarian growth in the ricefield eel, and these results provide a better understanding of the function of bmpr2 in ovarian development and the basic data for further exploration of the regulatory mechanism of gdf9 in oocyte development.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3