Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy

Author:

Hillenaar TamaraORCID,Beekman Jeffrey,van der Sluijs Peter,Braakman InekeORCID

Abstract

Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question ‘What characterizes the exceptions: the mutants that functionally respond either not or extremely well’. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.

Funder

Netherlands Cystic Fibrosis Foundation

Cystic Fibrosis Foundation

ZonMW

Dutch Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference71 articles.

1. Molecular Structure of the Human CFTR Ion Channel;Liu;Cell,2017

2. Molecular structure of the ATP-bound, phosphorylated human CFTR;Zhang;Proc. Natl. Acad. Sci. USA,2018

3. Conformational Changes of CFTR upon Phosphorylation and ATP Binding;Zhang;Cell,2017

4. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel;Cheng;Cell,1991

5. (2022, July 25). Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3