A Machine Learning Approach for Prediction of the Quantity of Mine Waste Rock Drainage in Areas with Spring Freshet

Author:

Zhang Can1ORCID,Ma Liang2,Liu Wenying1

Affiliation:

1. Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4, Canada

2. Energy, Mining and Environment Research Center, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada

Abstract

A new machine learning approach was developed to predict the quantity of mine waste rock drainage using weather data as the inputs. The novelty of the approach is that it includes spring freshet (melting of snow/ice in spring) as an input to the drainage flow rate model. Specifically, the machine learning approach integrates the decision tree algorithm to classify the occurrence or absence of spring freshet and a long short-term memory (LSTM) algorithm to predict the flow rate of mine waste rock drainage. The two algorithms are integrated by using the classification result of spring freshet as an input to the flow rate model. The machine learning approach developed was applied to predict the drainage flow rate at a case study mine in Canada. The model developed was trained with the local weather data as the inputs and the historical monitoring data of drainage flow rate as the target (output). The results show that the decision tree algorithm is able to classify the occurrence or absence of spring freshet with an accuracy of 91%. The inclusion of spring freshet as an input to the flow rate model significantly improves the performance of the flow rate model. The sensitivity tests show that changes in temperature and atmospheric precipitation influence the drainage flow rate.

Funder

National Research Council Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3