An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running

Author:

Ashcroft Kurtis12,Robinson Tony1ORCID,Condell Joan1ORCID,Penpraze Victoria2,White Andrew2,Bird Stephen P.3ORCID

Affiliation:

1. Faculty of Computing, Engineering and the Built Environment, Ulster University, Derry BT48 7JL, UK

2. School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

3. School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia

Abstract

The purpose of this study was two-fold: (1) to determine the sensitivity of the sEMG shorts-derived training load (sEMG-TL) during different running speeds; and (2) to investigate the relationship between the oxygen consumption, heart rate (HR), rating of perceived exertion (RPE), accelerometry-based PlayerLoadTM (PL), and sEMG-TL during a running maximum oxygen uptake (V˙O2max) test. The study investigated ten healthy participants. On day one, participants performed a three-speed treadmill test at 8, 10, and 12 km·h−1 for 2 min at each speed. On day two, participants performed a V˙O2max test. Analysis of variance found significant differences in sEMG-TL at all three speeds (p < 0.05). A significantly weak positive relationship between sEMG-TL and %V˙O2max (r = 0.31, p < 0.05) was established, while significantly strong relationships for 8 out of 10 participants at the individual level (r = 0.72–0.97, p < 0.05) were found. Meanwhile, the accelerometry PL was not significantly related to %V˙O2max (p > 0.05) and only demonstrated significant correlations in 3 out of 10 participants at the individual level. Therefore, the sEMG shorts-derived training load was sensitive in detecting a work rate difference of at least 2 km·h−1. sEMG-TL may be an acceptable metric for the measurement of internal loads and could potentially be used as a surrogate for oxygen consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3