Optimal Power Flow Solution of Power Systems with Renewable Energy Sources Using White Sharks Algorithm

Author:

Ali Mahmoud A.ORCID,Kamel SalahORCID,Hassan Mohamed H.ORCID,Ahmed Emad M.ORCID,Alanazi MohanaORCID

Abstract

Modern electrical power systems are becoming increasingly complex and are expanding at an accelerating pace. The power system’s transmission lines are under more strain than ever before. As a result, the power system is experiencing a wide range of issues, including rising power losses, voltage instability, line overloads, and so on. Losses can be minimized and the voltage profile can be improved when energy resources are installed on appropriate buses to optimize real and reactive power. This is especially true in densely congested networks. Optimal power flow (OPF) is a basic tool for the secure and economic operation of power systems. It is a mathematical tool used to find the instantaneous optimal operation of a power system under constraints meeting operation feasibility and security. In this study, a new application algorithm named white shark optimizer (WSO) is proposed to solve the optimal power flow (OPF) problems based on a single objective and considering the minimization of the generation cost. The WSO is used to find the optimal solution for an upgraded power system that includes both traditional thermal power units (TPG) and renewable energy units, including wind (WPG) and solar photovoltaic generators (SPG). Although renewable energy sources such as wind and solar energy represent environmentally friendly sources in line with the United Nations sustainable development goals (UN SDG), they appear as a major challenge for power flow systems due to the problems of discontinuous energy production. For overcoming this problem, probability density functions of Weibull and Lognormal (PDF) have been used to aid in forecasting uncertain output powers from WPG and SPG, respectively. Testing on modified IEEE-30 buses’ systems is used to evaluate the proposed method’s performance. The results of the suggested WSO algorithm are compared to the results of the Northern Goshawk Optimizer (NGO) and two other optimization methods to investigate its effectiveness. The simulation results reveal that WSO is more effective at finding the best solution to the OPF problem when considering total power cost minimization and solution convergence. Moreover, the results of the proposed technique are compared to the other existing method described in the literature, with the results indicating that the suggested method can find better optimal solutions, employ less generated solutions, and save computation time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3