Study on the Vibration Isolation Performance of Composite Subgrade Structure in Seasonal Frozen Regions

Author:

Han LeileiORCID,Wei Haibin,Wang Fuyu

Abstract

Silty clay modified by fly ash and crumb rubber is a kind of sustainable subgrade filler that has good freeze–thaw resistance stability, but weak vibration isolation performance. The objective of this study was to improve the vibration isolation of the modified soil and investigate the vibration isolation effect of the composite subgrade structure of extruded polystyrene (XPS) plates and the modified soil by the indoor impact test. First, the vibration isolation performance of silty clay, modified soil, and composite subgrade structure was respectively evaluated. Second, the effect of the XPS plate’s thickness and vibration intensity on the vibration performance of the composite subgrade structure were evaluated. Third, the vibration isolation performance of the test groups under the condition of freeze–thaw cycles was assessed. The results show that the vibration isolation performance of the subgrade can be effectively improved by setting XPS plates. The composite subgrade structure has a certain vibration isolation effect, especially in the vertical direction. Considering the vibration isolation performance and costs, 5 cm was the optimum XPS plate thickness. The composite subgrade structure showed a great vibration isolation performance under the condition of freeze–thaw cycles, so it is suitable for application in road subgrade in seasonal frozen regions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3