Recent Developments Regarding Painting Robots for Research in Automatic Painting, Artificial Creativity, and Machine Learning

Author:

Gülzow Jörg MarvinORCID,Paetzold PatrickORCID,Deussen Oliver

Abstract

E-David (Electronic Drawing Apparatus for Vivid Image Display) is a system for controlling a variety of painting machines in order to create robotic paintings. This article summarizes the hardware set-up used for painting, along with recent developments, lessons learned from past painting machines, as well as plans for new approaches. We want to apply e-David as a platform for research towards improving automatic painting and to explore machine creativity. We present different painting machines, from small low-cost plotters to large industrial robots, and discuss the benefits and limitations of each type of platform and present their applicability to different tasks within the domain of robotic painting and artificial creativity research. A unified control interface with a scripting language allows users a simplified usage of different e-David-like machines. Furthermore, we present our system for automated stroke experimentation and recording, which is an advance towards allowing the machine to autonomously learn about brush dynamics. Finally, we also show how e-David can be used by artists “in the field” for different exhibitions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emulating Artistic Expressions in Robot Painting: A Stroke-Based Approach;Applied Sciences;2024-06-18

2. A Sim-to-Real Pipeline for Stroke-Based Robotic Painting;2024 3rd International Conference on Innovations and Development of Information Technologies and Robotics (IDITR);2024-05-23

3. Using machine learning to predict artistic styles: an analysis of trends and the research agenda;Artificial Intelligence Review;2024-04-15

4. Innovations in Robotic Technology: A Smart Robotic Design for Effortless Wall Painting using Artificial Intelligence;2024 International Conference on Automation and Computation (AUTOCOM);2024-03-14

5. Next-Generation Exterior Painting: A Prototype Model for High-Rise Buildings with ESP32 Wireless Control;International Journal of Architectural Engineering Technology;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3