Nanocellular Polymers: The Challenge of Creating Cells in the Nanoscale

Author:

Martín-de León Judith,Bernardo Victoria,Rodríguez-Pérez Miguel

Abstract

The evolution of technology means that increasingly better materials are needed. It is well known that as a result of their interesting properties, nanocellular polymers perform better than microcellular ones. For this reason, the investigation on nanocellular materials is nowadays a very topical issue. In this paper, the different approaches for the production of these materials in our laboratory are explained, and results obtained by using polymethylmethacrylate (PMMA) are shown. Homogeneous nucleation has been studied by using raw PMMA, while two different systems were used for heterogeneous nucleation; adding nanoparticles to the system and using nanostructured polymers as solid precursors for foaming. The effects of the different parameters of the production process (gas dissolution foaming process) have been evaluated for all systems being possible to establish a comparison between the materials produced by different approaches. Moreover, the limitations and future work to optimise the materials produced are also discussed.

Publisher

MDPI AG

Subject

General Materials Science

Reference91 articles.

1. Cellular Solids;Gibson,1997

2. Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications

3. Structure-property relationships of medium-density polypropylene foams

4. Handbook of Polymer Foams;Eaves,2004

5. Marketsandmarkets http://www.marketsandmarkets.com/Market-Reports/foams-market-1011.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3